Skip to contents

Gets the warnings and errors from `calculate_power_curves()` output.

Usage

get_power_curve_output(power_curve)

Arguments

power_curve

The output from `calculate_power_curves()`

Value

A list of data.frames containing warning/error information

Examples

#Generate sample
if(skpr:::run_documentation()) {
calculate_power_curves(trials=seq(50,150,by=20),
                      candidateset = expand.grid(x=c(-1,1),y=c(-1,1)),
                      model = ~.,
                      effectsize = list(c(0.5,0.9),c(0.6,0.9)),
                      eval_function = eval_design_mc,
                      eval_args = list(nsim = 100, glmfamily = "binomial"))
}

#>      parameter               type power trials effectsize_low effectsize_high
#> 1  (Intercept)    effect.power.mc  0.85     50            0.5             0.9
#> 2            x    effect.power.mc  0.85     50            0.5             0.9
#> 3            y    effect.power.mc  0.70     50            0.5             0.9
#> 4  (Intercept) parameter.power.mc  0.85     50            0.5             0.9
#> 5            x parameter.power.mc  0.85     50            0.5             0.9
#> 6            y parameter.power.mc  0.70     50            0.5             0.9
#> 7  (Intercept)    effect.power.mc  0.96     70            0.5             0.9
#> 8            x    effect.power.mc  0.95     70            0.5             0.9
#> 9            y    effect.power.mc  0.94     70            0.5             0.9
#> 10 (Intercept) parameter.power.mc  0.96     70            0.5             0.9
#> 11           x parameter.power.mc  0.95     70            0.5             0.9
#> 12           y parameter.power.mc  0.94     70            0.5             0.9
#> 13 (Intercept)    effect.power.mc  0.99     90            0.5             0.9
#> 14           x    effect.power.mc  1.00     90            0.5             0.9
#> 15           y    effect.power.mc  0.99     90            0.5             0.9
#> 16 (Intercept) parameter.power.mc  0.99     90            0.5             0.9
#> 17           x parameter.power.mc  1.00     90            0.5             0.9
#> 18           y parameter.power.mc  0.99     90            0.5             0.9
#> 19 (Intercept)    effect.power.mc  0.99    110            0.5             0.9
#> 20           x    effect.power.mc  1.00    110            0.5             0.9
#> 21           y    effect.power.mc  1.00    110            0.5             0.9
#> 22 (Intercept) parameter.power.mc  0.99    110            0.5             0.9
#> 23           x parameter.power.mc  1.00    110            0.5             0.9
#> 24           y parameter.power.mc  1.00    110            0.5             0.9
#> 25 (Intercept)    effect.power.mc  1.00    130            0.5             0.9
#> 26           x    effect.power.mc  1.00    130            0.5             0.9
#> 27           y    effect.power.mc  1.00    130            0.5             0.9
#> 28 (Intercept) parameter.power.mc  1.00    130            0.5             0.9
#> 29           x parameter.power.mc  1.00    130            0.5             0.9
#> 30           y parameter.power.mc  1.00    130            0.5             0.9
#> 31 (Intercept)    effect.power.mc  1.00    150            0.5             0.9
#> 32           x    effect.power.mc  1.00    150            0.5             0.9
#> 33           y    effect.power.mc  1.00    150            0.5             0.9
#> 34 (Intercept) parameter.power.mc  1.00    150            0.5             0.9
#> 35           x parameter.power.mc  1.00    150            0.5             0.9
#> 36           y parameter.power.mc  1.00    150            0.5             0.9
#> 37 (Intercept)    effect.power.mc  0.89     50            0.6             0.9
#> 38           x    effect.power.mc  0.65     50            0.6             0.9
#> 39           y    effect.power.mc  0.60     50            0.6             0.9
#> 40 (Intercept) parameter.power.mc  0.89     50            0.6             0.9
#> 41           x parameter.power.mc  0.65     50            0.6             0.9
#> 42           y parameter.power.mc  0.60     50            0.6             0.9
#> 43 (Intercept)    effect.power.mc  0.98     70            0.6             0.9
#> 44           x    effect.power.mc  0.76     70            0.6             0.9
#> 45           y    effect.power.mc  0.81     70            0.6             0.9
#> 46 (Intercept) parameter.power.mc  0.98     70            0.6             0.9
#> 47           x parameter.power.mc  0.76     70            0.6             0.9
#> 48           y parameter.power.mc  0.81     70            0.6             0.9
#> 49 (Intercept)    effect.power.mc  1.00     90            0.6             0.9
#> 50           x    effect.power.mc  0.92     90            0.6             0.9
#> 51           y    effect.power.mc  0.95     90            0.6             0.9
#> 52 (Intercept) parameter.power.mc  1.00     90            0.6             0.9
#> 53           x parameter.power.mc  0.92     90            0.6             0.9
#> 54           y parameter.power.mc  0.95     90            0.6             0.9
#> 55 (Intercept)    effect.power.mc  1.00    110            0.6             0.9
#> 56           x    effect.power.mc  0.99    110            0.6             0.9
#> 57           y    effect.power.mc  0.98    110            0.6             0.9
#> 58 (Intercept) parameter.power.mc  1.00    110            0.6             0.9
#> 59           x parameter.power.mc  0.99    110            0.6             0.9
#> 60           y parameter.power.mc  0.98    110            0.6             0.9
#> 61 (Intercept)    effect.power.mc  1.00    130            0.6             0.9
#> 62           x    effect.power.mc  0.99    130            0.6             0.9
#> 63           y    effect.power.mc  0.98    130            0.6             0.9
#> 64 (Intercept) parameter.power.mc  1.00    130            0.6             0.9
#> 65           x parameter.power.mc  0.99    130            0.6             0.9
#> 66           y parameter.power.mc  0.98    130            0.6             0.9
#> 67 (Intercept)    effect.power.mc  1.00    150            0.6             0.9
#> 68           x    effect.power.mc  0.99    150            0.6             0.9
#> 69           y    effect.power.mc  0.97    150            0.6             0.9
#> 70 (Intercept) parameter.power.mc  1.00    150            0.6             0.9
#> 71           x parameter.power.mc  0.99    150            0.6             0.9
#> 72           y parameter.power.mc  0.97    150            0.6             0.9
#>    random_seed
#> 1          123
#> 2          123
#> 3          123
#> 4          123
#> 5          123
#> 6          123
#> 7          123
#> 8          123
#> 9          123
#> 10         123
#> 11         123
#> 12         123
#> 13         123
#> 14         123
#> 15         123
#> 16         123
#> 17         123
#> 18         123
#> 19         123
#> 20         123
#> 21         123
#> 22         123
#> 23         123
#> 24         123
#> 25         123
#> 26         123
#> 27         123
#> 28         123
#> 29         123
#> 30         123
#> 31         123
#> 32         123
#> 33         123
#> 34         123
#> 35         123
#> 36         123
#> 37         123
#> 38         123
#> 39         123
#> 40         123
#> 41         123
#> 42         123
#> 43         123
#> 44         123
#> 45         123
#> 46         123
#> 47         123
#> 48         123
#> 49         123
#> 50         123
#> 51         123
#> 52         123
#> 53         123
#> 54         123
#> 55         123
#> 56         123
#> 57         123
#> 58         123
#> 59         123
#> 60         123
#> 61         123
#> 62         123
#> 63         123
#> 64         123
#> 65         123
#> 66         123
#> 67         123
#> 68         123
#> 69         123
#> 70         123
#> 71         123
#> 72         123
#> Power curve generation captured the following warning/error messages:
#> Function   | Type | N | Message
#> Evaluation | Warn | 1 | Message: 'skpr: Partial or complete separation likely detected in the binomial Monte Carlo simulation. Increase the number of runs in the design or decrease the number of model parameters to improve power.'